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Course Outline

Parallelism & MPI (10 am - noon)

|. Parallelism
Il. Supercomputer Architecture
Ill. Basic MPI

(Interlude 1: Computing Pi in parallel)

1I\/.  MPI Collectives

(Interlude 2: Computing Pi using parallel collectives)

OpenMP & Hybrid Programming (1 - 3 pm)

Office of
Science

%l BERKELEY LAB
Bringing Science Solutions to the World



Course Outline

Parallelism & MPI (10 am - noon)

OpenMP & Hybrid Programming (1 - 3 pm)
I. About OpenMP

Il. OpenMP Directives

Ill. Data Scope

V. Runtime Library Routines & Environment
V. Using OpenMP

(Interlude 3: Computing Pi with OpenMP)

VI. Hybrid Programming
(Interlude 4: Computing Pi with Hybrid Programming)
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|. PARALLELISM

“Parallel Worlds” by aloshbennett from
http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/
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http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

|. Parallelism

e Concepts of parallelization
e Serial vs. parallel
e Parallelization strategies

Office of
Science
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Parallelization Concepts

e When performing task, some subtasks depend on one
another, while others do not
e Example: Preparing dinner

o Salad prep independent of lasagna baking
o Lasagna must be assembled before baking

e Likewise, in solving scientific problems, some tasks
independent of one another

Office of
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Serial vs. Parallel

e Serial: tasks must be performed in sequence
e Parallel: tasks can be performed independently in any
order
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Serial vs. Parallel: Example

e Preparing lasagna dinner

e Serial tasks: making sauce, assembling
lasagna, baking lasagna; washing lettuce,
cutting vegetables, assembling salad

e Parallel tasks: making lasagna, making salad,
setting table

Office of
Science




Serial vs. Parallel: Graph

Wash veg

| Spread
| <

| Bake
K L
u Garlic Bread

Serve Dinner
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Serial vs. Parallel: Graph
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Serial vs. Parallel: Graph

4:15 4:30 5:00

 NERSC | 12
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Serial vs. Parallel: Example

e Could have several chefs,
each performing one parallel
task

e This is concept behind parallel
computing

Office of
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Discussion: Jigsaw Puzzle

e Suppose we want to do a large,
N-piece jigsaw puzzle (e.g., N =
10,000 pieces)

e Time for one person to complete
puzzle: T hours

e How can we decrease walltime to
completion?

Office of
Science




Discussion: Jigsaw Puzzle

e Impact of having multiple people at the table
o Walltime to completion
o Communication
o Resource contention

e Let number of people =p
o Think about what happens whenp = 1, 2, 4, ... 5000

NERSC 15 & BERKELEY LAB
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Discussion: Jigsaw Puzzle

Alternate setup: p people, each at separate table with N/p
pieces each

e What is the impact on
o Walltime to completion
o Communication
o Resource contention?

(R Office of
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Discussion: Jigsaw Puzzle

Alternate setup: divide puzzle by features, each person
works on one, e.g., mountain, sky, stream, tree, meadow, etc.

e What is the impact on
o Walltime to completion
o Communication
o Resource contention?
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Parallel Algorithm Design: PCAM

e PFartition: Decompose problem into fine-grained tasks to
maximize potential parallelism

e Communication: Determine communication pattern
among tasks

e Agglomeration: Combine into coarser-grained tasks, if
necessary, to reduce communication requirements or
other costs

e Mapping: Assign tasks to processors, subject to tradeoff
between communication cost and concurrency

(from Heath: Parallel Numerical Algorithms)
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II. ARCHITECTURE

“Architecture” by marie-ll, http://www.flickr.com/photos/qgrrrl/324473920/sizes/|/in/photostream/
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http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

Il. Supercomputer Architecture

e What is a supercomputer?
e Conceptual overview of architecture

IBM Blue
Gene
(2005)

Architecture of IBM Blue Gene

A
)
A

g
|

TTYYYYYYNY

System

— 64 cabinets
~11mm Cabinet 65,536 nodes
e 2 midpianes (131,072 CPUs)

= ' Node Card 1024 nodes (32x32x64)
# ‘ ' 16 compute cards (2,048 CPUs) 1801360 TFis
0-2 1/0 cards (8x8x16) 131; m
e Chip 32 nodes 2.9/5.7 TFls SJamw.
FRU (field (64 CPUs) 512 GiB* DDR 500 sq.
ggosceesss:/r: replaceable unit) (4x4x2) 15-20 kW MTBF 6.16 Days
4 MiB* eDRAM 25mmx32mm 90/180 GF/s

_ 2 nodes (4 CPUs) 16 GiB* DDR

(compare this with a 1988 (2x1x1)
Cray YMP/8 8t 2.7 GF/s) 2x(2.8/5.6) GF/s
2x512 MiB* DDR
15W
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What Is a Supercomputer?

e “The biggest, fastest computer right this minute.”
— Henry Neeman

e Generally at least 100 times more powerful than PC

e This field of study known as supercomputing,
high-performance computing (HPC), or scientific
computing

e Scientists use really big computers to solve really hard
problems

%] BERKELEY LAB ‘7
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SMP Architecture

e Massive memory, shared by multiple processors

e Any processor can work on any task, no matter its
location in memory

e l|deal for parallelization of sums, loops, etc.
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Cluster Architecture

e CPUs on racks, do computations (fast)

e Communicate through networked connections (slow)

e Want to write programs that divide computations evenly
but minimize communication
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State-of-the-Art Architectures

e Today, hybrid architectures pervasive

(@)

Multiple {8, 12, 16, 24, 32, 68}-core nodes, connected to other
nodes by (slow) interconnect

Cores in node share memory (like small SMP machines)
Machine appears to follow cluster architecture (with multi-core
nodes rather than single processors)

To take advantage of all parallelism, use MPI (cluster) and
OpenMP (SMP) hybrid programming

o4 22| BERKELEY LAB
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State-of-the-Art Architectures

e Hybrid CPU/GPGPU architectures broadly accepted
o Nodes consist of one (or more) multicore CPU + one (or more)
GPU
o Heavy computations offloaded to GPGPUs
o Separate memory for CPU and GPU
o Complicated programming paradigm, outside the scope of
today’s training
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IIl. BASIC MPI

“‘MPI Adventure” by Stefan Jurgensen, from
http://www.flickr.com/photos/94039982@N00/6177616380/sizes/|/in/photostream/
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lll. Basic MPI

Introduction to MPI

Parallel programming concepts
The Six Necessary MPl Commands
Example program
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Introduction to MPI

e Stands for Message Passing Interface

e Industry standard for parallel programming (200+ page
document)

e MPI implemented by many vendors; open source

Implementations available too

o Cray, IBM, HPE vendor implementations
o MPICH, LAM-MPI, OpenMPI (open source)

e MPI function library is used in writing C, C++, or Fortran
programs in HPC

Office of
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Introduction to MPI

e MPI-1 vs. MPI-2: MPI-2 has additional advanced
functionality and C++ bindings, but everything learned in
this section applies to both standards

e MPI-3: Major revisions (e.g., nonblocking collectives,
extensions to one-sided operations), released September
2012, 800+ pages

o MPI-3.1 released June 2015
o MPI-3 additions to standard will not be covered today

e MPI-4: Standard currently in development

3 - {*f‘*\«T U.S. DEPARTMENT OF Office of
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Parallelization Concepts

e Two primary programming paradigms:
o SPMD (single program, multiple data)
o MPMD (multiple programs, multiple data)

e MPI can be used for either paradigm

NERSC 30 & BERKELEY LAB
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SPMD vs. MPMD

e SPMD: Write single program that will perform same

operation on multiple sets of data
o Multiple chefs baking many lasagnas
o Rendering different frames of movie

e MPMD: Write different programs to perform different

operations on multiple sets of data
o Multiple chefs preparing four-course dinner
o Rendering different parts of movie frame

e (Can also write hybrid program in which some processes
perform same task

NERSC 31 2l BERKELEY LAB
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he Six Necessary MP| Commands

int MPI Init(int *argc, char **argv)

int MPI Finalize (void)

int MPI Comm size (MPI Comm comm, int *size)
int MPI Comm rank (MPI Comm comm, int *rank)

int MPI Send(void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)

int MPI Recv(void *buf, int count, MPI Datatype

datatype, int source, int tag, MPI Comm comm,

MPI Status *status)

NER 32 @il BERKELEY LAB ©
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Initiation and Termination

e MPI Init(int *argc, char **argv) initiates MPI
o Place in body of code after variable declarations and before any
MP| commands
e MPI Finalize (void) shuts down MPI
> Place near end of code, after last MPl command

NERSC 33 B BERKELEY LAB
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Environmental Inquiry

¢ MPI Comm size (MPI Comm comm, int *size)
o Find out number of processes
o Allows flexibility in number of processes used in program
¢ MPI Comm rank (MPI Comm comm, int *rank)
o Find out identifier of current process
o 0 £ rank £ size-1

Office of
Science
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Message Passing: Send

¢ MPI Send(void *buf, int count,

MPI Datatype datatype, int dest, int tag,
MPI Comm comm)

o Send message of length count items and datatype datatype

contained in buf with tag tag to process number dest in
communicator comm

o E.g.,MPI_Send(&x, 1, MPI DOUBLE, manager, me,
MPI_COMM WORLD)

Office of
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Message Passing: Receive

e MPI Recv(void *buf, int count,

MPI Datatype datatype, int source, int
tag, MPI Comm comm, MPI Status *status)

e Receive message of length count items and datatype
datatype with tag tag in buffer buf from process
number source in communicator comm, and record
status status

e E.g.MPI Recv(&x, 1, MPI DOUBLE, source,
source, MPI COMM WORLD, é&status)

Office of
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Message Passing

e WARNING! Both standard send and receive functions are
blocking

e MPI Recv returns only after receive buffer contains
requested message

e MPI Send may or may not block until message received
(usually blocks)

e Must watch out for deadlock

Office of
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Deadlocking Example (Always)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI_Comm size (MPI_COMM WORLD,
MPI Comm rank (MPI_COMM WORLD,
if (np%2==1) return O;
if (me%$2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD) ;
printf (“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto) ;
MPI Finalize();
return O;

» U.S. DEPARTMENT OF Offlce of
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Deadlocking Example (Sometimes)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI_Comm size (MPI_COMM WORLD,
MPI Comm rank (MPI_COMM WORLD,
if (np%2==1) return O;
if (me%$2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD) ;
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
printf (“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto) ;
MPI Finalize();
return O;
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Deadlocking Example (Safe)

#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) ({
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD,
MPI_Comm_rank (MPI_COMM WORLD,
if (np%2==1) return O;
if (me%2==1) {sendto = me-1;}

else {sendto = me+l;}
if (me%$2 == 0) {
MPI Send(&me, 1, MPI_INT, sendto, me, MPI_COMM WORLD) ;
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
} else {
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
MPI Send(&me, 1, MPI_ INT, sendto, me, MPI COMM WORLD) ;

}

printf (“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, g, sendto);
MPI Finalize();

return O;

BERKELEY LAB
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Explanation: Always Deadlocking Example

e Logically incorrect

e Deadlock caused by blocking MPI Recvs

e All processes wait for corresponding MPI_Sends to
begin, which never happens

ZZR>, U.S. DEPARTMENT OF Office of
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Explanation: Sometimes Deadlocking Example

e Logically correct

e Deadlock could be caused by MPI _Sends competing for
buffer space

e Unsafe because depends on system resources

e Solutions:
o Reorder sends and receives, like safe example, having evens
send first and odds send second
o Use non-blocking sends and receives or other advanced
functions from MPI library (see MPI standard for details)

NERSC 42 B BERKELEY LAB
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INTERLUDE 1: COMPUTING PI IN PARALLEL

“Pi of Pi” by spellbee2, from
http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/
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http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

Interlude 1: Computing & in Parallel

Project Description
Serial Code
Parallelization Strategies
Your Assignment




Project Description

e We want to compute &

e One method: method of
darts®

e Ratio of area of square to
area of inscribed circle
proportional to &

* This is a TERRIBLE way to compute pi! Don’t

- i . “Picycle” by Tang Yau Hoong, from
1
\(;iv(;)tlz;s in real life!!!! (See Appendix 1 for better http://www.flickr.com/photos/tangyauhoong/5

609933651 /sizes/o/in/photostream/
NERSC 45
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http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/

Method of Darts

e Imagine dartboard with
circle of radius R inscribed
In square

e Areaofcircle =zF

o Area of square =(2R) =4FR’

o Areaofcircle _7R _=x
Area of square 4R 4

“Dartboard” by AndyRobertsPhotos, from
http://www.flickr.com/photos/aroberts/290
7670014/sizes/o/in/photostream/

Office of
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Method of Darts

e Ratio of areas proportional to &

e How to find areas?
o Suppose we threw darts (completely
randomly) at dartboard
o Count # darts landing in circle & total # darts
landing in square
o Ratio of these numbers gives approximation to ratio of areas
o Quality of approximation increases with # darts thrown

S n f,‘*f*\«‘ U.S. DEPARTMENT OF
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Method of Darts

a =4 x # darts inside circle
# darts thrown

Method of Darts cake in celebration of Pi
Day 2009, Rebecca Hartman-Baker

Office of
Science




Method of Darts

e Okay, Rebecca, but how in the world do we simulate this
experiment on a computer?

e Decide on length R

e Generate pairs of random numbers (x, y) s.t.

-R<(x,y) <R

e If (x, y) within circle (i.e., if (x’+1°) <R?) add one to tally for
Inside circle
e Lastly, find ratio

Office of
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Serial Code (darts.c)

#include "lcgenerator.h"
static long num trials = 1000000;

int main() {
long i;
long Ncirc = 0;
double pi, x, y;
double r = 1.0; // radius of circle
double r2 = r*r;

for (i = 0; i < num_trials; i++) {
x = r*lcgrandom() ;
y = r*lcgrandom() ;
if ((x*x + y*y) <= r2)
Ncirc++;

= 4.0 * ((double)Ncirc)/((double)num trials);

printf("\n For %1d trials, pi = %$f\n", num trials, pi);

return 0;

BERKELEY LAB
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Serial Code (Icgenerator.h)

// Random number generator -- and not a very good one, either!

static long MULTIPLIER = 1366;
static long ADDEND 150889;
static long PMOD = 714025;
long random last = 0;

// This is not a thread-safe random number generator

double lcgrandom() ({
long random next;
random next = (MULTIPLIER * random last + ADDEND) $PMOD ;
random last = random next;

return ((double)random_next/(double)PMOD);

ZER U.S. DEPARTMENT OF Offlce of
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Serial Code (darts.f) (1)

! First, the pseudorandom number generator

real function lcgrandom()
integer*8, parameter :: MULTIPLIER = 1366
integer*8, parameter :: ADDEND = 150889
integer*8, parameter :: PMOD = 714025
integer*8, save :: random last = 0

integer*8 :: random next = 0

random next = mod((MULTIPLIER * random last + ADDEND), PMOD)
random last = random next

lcgrandom = (1.0*random next)/PMOD

return

end

ZER U.S. DEPARTMENT OF Offlce of
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Serial Code (darts.f) (2)

! Now, we compute pi
program darts

implicit none
integer*8 :: num trials = 1000000,
real :: pi = 0.0, x =0.0, y=0.0, r
real :: r2 = 0.0
real :: lcgrandom
r2 = r*r

do i = 1, num trials

X = r*lcgrandom/()
y = r*lcgrandom()
if ((x*x + y*y) .le. r2) then
Ncirc = Ncirc+l
end if
end do
= 4.0*((1.0*Ncirc)/(1.0*num trials))
print*, ' For ‘', num trials, ' trials, pi

BERKELEY LAB
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Parallelization Strategies

e What tasks independent of each other?
e What tasks must be performed sequentially?
e Using PCAM parallel algorithm design strategy

i BERKELEY LAB
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Partition | S

<488 “Decompose problem into fine-grained tasks to maximize
potential parallelism” S |
SJe-Finest grained task: throw of one dart | SHe-
<S8 Each throw independent of all others SHe- ~<is
=i |If we had huge computer, could assign one throw to each
rocessor . . SHe-
b S S = S
S = &=




Communication

“Determine communication pattern among tasks”

e Each processor throws dart(s) then sends results back to
manager process

3, =

0

Office of
Science
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Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs”

e To get good value of 1T, must use millions of darts

e We don’t have millions of processors available

e Furthermore, communication between manager and
millions of worker processors would be very expensive

e Solution: divide up number of dart throws evenly between
processors, so each processor does a share of work

0 BERKELEY LAB & ENERGY  oreor
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Mapping

“Assign tasks to processors, subject to tradeoff between
communication cost and concurrency”

e Assign role of “manager” to processor 0
e Processor 0 will receive tallies from all the other
processors, and will compute final value of 1

e Every processor, including manager, will perform equal
share of dart throws ‘

Office of
Science
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Your Assignment

e Clone the whole assignment (including answers!) to Cori from
the repository with: git clone
https://github.com/hartmanbaker/Developing-wit
h-MPI-and-OpenMP.git

e Copydarts.c/lcgenerator.h ordarts. f (your choice)
from
Developing-with-MPI-and-OpenMP/darts-suite/{c,
fortran}

e Parallelize the code using the 6 basic MP| commands

e Rename your new MPI code darts-mpi.c ordarts-mpi.f

NERSC 59 2l BERKELEY LAB
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IV. MPI COLLECTIVES

“The First Tractor” by Vladimir Krikhatsky (socialist realist, 1877-1942). Source:
http://en.wikipedia.org/wiki/File:Wladimir Gawriilowitsch Krikhatzkij - The First Tractor.jpg
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http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

MPI Collectives

e Communication involving group of processes

e Collective operations
o Broadcast
o Gather
o Scatter
o Reduce
o All-
o Barrier
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Broadcast

e Perhaps one message needs to be sent from manager to
all worker processes

e Could send individual messages

e Instead, use broadcast — more efficient, faster

¢ int MPI Bcast(void* buffer, int count,
MPI Datatype datatype, int root, MPI Comm
comm)

Office of
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Gather

e All processes need to send same (similar) message to manager

e Could implement with each process calling MPI_Send(...) and
manager looping through MPI_Recv (...)

e Instead, use gather operation — more efficient, faster

e Messages concatenated in rank order

¢ int MPI Gather (void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

e Note: recvcount = # items received from each process, not total

< "‘f‘ EEEEEEEEEEEEEE Offlce Of
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Gather

NERSC 64 2l BERKELEY LAB

Maybe some processes need to send longer messages than
others

Allow varying data count from each process with

MPI Gatherv(..)

int MPI Gatherv(void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI Datatype
recvtype, int root, MPI Comm comm)

recvcounts is array; entry i in displs array specifies
displacement relative to recvbuf [0] at which to place data
from corresponding process number
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Scatter

e Inverse of gather: split message into NP equal pieces, with ith
segment sent to ith process in group

¢ int MPI Scatter(void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

e Send messages of varying sizes across processes in group:
MPI Scatterv(..)

¢ int MPI Scatterv(void* sendbuf, int *sendcounts,
int *displs, MPI datatype sendtype, void¥*
recvbuf, int recvcount, MPI Datatype recvtype,
int root, MPI Comm comm)

NERSC 65 2l BERKELEY LAB
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Reduce

e Perhaps we need to do sum of many subsums owned by
all processors

e Perhaps we need to find maximum value of variable
across all processors

e Perform global reduce operation across all group
members

e int MPI Reduce (void* sendbuf, void*
recvbuf, int count, MPI Datatype datatype,
MPI Op op, int root, MPI Comm comm)

NERSC 66 2l BERKELEY LAB
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Reduce: Predefined Operations

MPI MAX
MPI MIN
MPI_SUM
MPI_PROD
MPI LAND
MPI_BAND
MPI_ LOR
MPI_BOR
MPI LXOR
MPI_ BXOR
MPI MAXLOC
MPI MINLOC

Maximum
Minimum
Sum
Product
Logical and
Bitwise and
Logical or
Bitwise or
Logical xor
Bitwise xor
Maximum value & location

Minimum value & location

67

Integer, floating point

Integer, floating point

Integer, floating point, complex
Integer, floating point, complex
Integer, logical

Integer, logical

Integer, logical

Integer, logical

Integer, logical

Integer, logical

*

*
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Reduce: Operations

e MPI MAXLOC and MPI _MINLOC
> Returns {max, min} and rank of first process with that value

o Use with special MPI pair datatype arguments:
m MPI FLOAT INT (float and int)
= MPI DOUBLE_ INT (double and int)
m MPI_LONG_INT (long and int)
m MPI 2INT (pair of int)

o See MPI standard for more details

e User-defined operations
o UseMPI Op create(..) to create new operations
o See MPI standard for more details

Office of
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All- Operations

e Sometimes, may want to have result of gather, scatter, or
reduce on all processes

e Gather operations
o int MPI Allgather (void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
recvcount, MPI Datatype recvtype, MPI Comm comm)
o int MPI Allgatherv(void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI Datatype recvtype,
MPI Comm comm)

NERSC 69 2l BERKELEY LAB
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All-to-All Scatter/Gather

e Extension of Allgather in which each process sends
distinct data to each receiver

e Block j from process i is received by process j into ith
block of recvbuf

e int MPI Alltoall (void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, MPI Comm comm)

e Corresponding MPI_Alltoallv function also available

NERSC 70 2l BERKELEY LAB
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All-Reduce

e Same as MPI_Reduce except result appears on all
processes

¢ int MPI Allreduce (void* sendbuf, void*
recvbuf, int count, MPI Datatype datatype,
MPI Op op, MPI Comm comm)

Office of
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Barrier

e |n algorithm, may need to synchronize processes
e Barrier blocks until all group members have called it
¢ int MPI Barrier (MPI Comm comm)
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Bibliography/Resources: MPI/MPI Collectives

e Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David
W. Walker, and Jack Dongarra. (1996) MPI: The
Complete Reference. Cambridge, MA: MIT Press. (also
available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html)

e MPICH Documentation
http://www.mpich.org/documentation/quides/
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http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.mpich.org/documentation/guides/

Bibliography/Resources: MPI/MPI Collectives

e Message Passing Interface (MPI) Tutorial
https://computing.linl.gov/tutorials/mpi/

e MPI Standard at MPI| Forum
o MPI1.1:
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
o MPI-2.2:
http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
o MPI 3.1:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
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BATAVIA RD

INTERLUDE 2: COMPUTING PI WITH MPI
COLLECTIVES

“Pi-Shaped Power Lines at Fermilab” by Michael Kappel from
http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/
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Interlude 2: Computing & with MPI| Collectives

e |n previous Interlude, you used the 6 basic MPI routines
to develop a parallel program using the Method of Darts
to compute &

e The communications in previous program could be made
more efficient by using collectives

e Your assignment: update your MPI code to use collective
communications

e Rename itdarts-collective.c or
darts-collective.f
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1.
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. About OpenMP

OpenMP Directives
Data Scope

Runtime Library Routines and Environment Variables
Using OpenMP
Hybrid Programming
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About OpenMP

e |ndustry-standard shared memory programming model

Developed in 1997
e OpenMP Architecture Review Board (ARB) determines

additions and updates to standard
e Current standard: 5.0 (November 2018)

%] BERKELEY LAB ‘7
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Advantages to OpenMP

e Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

e C(Can express simple or complex algorithms

e Code size grows only modestly

e Expression of parallelism flows clearly, so code is easy to
read

e Single source code for OpenMP and non-OpenMP —
non-OpenMP compilers simply ignore OMP directives

Office of
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OpenMP Programming Model

e Application Programmer Interface (APl) is combination of
o Directives
o Runtime library routines
o Environment variables
e API falls into three categories
o Expression of parallelism (flow control)
o Data sharing among threads (communication)
o Synchronization (coordination or interaction)

(X Office of
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Parallelism

e Shared memory, thread-based parallelism
e Explicit parallelism (parallel regions)
e Fork/join model

{ parallel region } { parallel region }

Source: https://computing.linl.gov/tutorials/openMP/

 NERSC. o3
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Il. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

’

SR, U.S. DEPARTMENT OF f

© ENERGY <0

il BERKELEY LAB
Bringing Science Solutions to the World



. OpenMP Directives

Syntax overview
Parallel

Loop

Sections
Synchronization
Reduction

 NERSC. o5
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Syntax Overview: C/C++

e Basic format
o #pragma omp directive-name [clause] newline

All directives followed by newline

Uses pragma construct (pragma = Greek for “thing done”)

Case sensitive

Directives follow standard rules for C/C++ compiler

directives

e Use curly braces (not on pragma line) to denote scope of
directive

e Long directive lines can be continued by escaping newline

character with \

Office of
Science
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Syntax Overview: Fortran

e Basic format:

o sentinel directive-name [clause]
e Three accepted sentinels: '$Somp *Somp cSomp
e Some directives paired with end clause

e Fixed-form code:

o Any of three sentinels
beginning at column 1

o Initial directive line has
space/zero in column 6

o Continuation directive line has
non-space/zero in column 6

o Standard rules for fixed-form
line length, spaces, etc. apply

@)
©)

e Free-form code:

! Somp only accepted sentinel
Sentinel can be in any column, but
must be preceded by only white
space and followed by a space

Line to be continued mustend in &
and following line begins with sentinel
Standard rules for free-form line
length, spaces, etc. apply

Bl BERKELEY LAB (@
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OpenMP Directives: Parallel

e A block of code executed by multiple threads
e Syntax:
#pragma omp parallel private(list) shared(list)
{

/* parallel section */

}

ISomp parallel private(list) &
'Somp shared(list)
! Parallel section
ISomp end parallel

NERSC | 88 3 BERKELEY LAB
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Simple Example (C/C++)

#include <stdio.h>
#include <omp.h>
int main (int argc, char *argv[]) {
int tid;
printf (“Hello world from threads:\n”);
#pragma omp parallel private (tid)
{

tid = omp get thread num() ;
printf (“<%d>\n”, tid);

}
printf ("I am sequential now\n”) ;
return O;

Office of
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Simple Example (Fortran)

program hello
integer tid, omp get thread num
rite(*,*) ‘Hello world from threads:’
ISomp parallel private (tid)
tid = omp get thread num()
rite(*,*) ‘<', tid, >’/
'Somp end parallel
rite(*,*) ‘I am sequential now’
end

i BERKELEY LAB

e Solutions to the World
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Simple Example: Output

Output 1 Output 2

Hello world from threads: Hello world from threads:
<0> <1>

<1> <2>

<> | Order of execution is scheduled by OS!!!

<3> =

<4> <3>

I am sequential now I am sequential now

Office of
Science
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OpenMP Directives: Loop

e lterations of the loop following the directive are executed

In parallel

e Syntax (C):
#pragma omp for schedule(type [,chunk]) private(list)\
shared(list) nowailt

{
/* for loop */

Office of
Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

 NERSC. o2



OpenMP Directives: Loop

e Syntax (Fortran):
!Somp do schedule (type [,chunk]) &
lomp private(list) shared(list)
C do loop goes here

'Somp end do nowait

e type = {static, dynamic, guided, runtime}
e If nowait specified, threads do not synchronize at end of
loop
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OpenMP Directives: Loop Scheduling

e Default scheduling determined by implementation
e Static

o |D of thread performing particular iteration is function of iteration
number and number of threads

o Statically assigned at beginning of loop

o Load imbalance may be issue if iterations have different amounts of
work

o Low overhead

e Dynamic

o Assignment of threads determined at runtime (round robin)

o Each thread gets more work after completing current work

o Load balance is possible

o Introduces extra overhead

Office of
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OpenMP Directives: Loop Scheduling

Size

static
static
dynamic
dynamic
guided

runtime

< 2 < Z2

N/A
Varies

C

N/P

C
<N/P
Varies

Lowest Simple Static
N/C Low Interleaved
P Medium Simple dynamic
N/C High Dynamic
<N/C Highest Dynamic optimized
Varies Varies Set by environment
variable

Note: N = size of loop, P = number of threads, C = chunk size

Office of
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Which Loops are Parallelizable?

Parallelizable Not Parallelizable

e Number of iterations known e Conditional loops (many while
upon entry, and does not loops)
change e lterator loops (e.g., iterating

e Each iteration independent of over std:: list<..>in C++)
all others e lterations dependent upon

e No data dependence each other

e Data dependence

Trick: If a loop can be run backwards and get the same results,
then it is almost always parallelizable!
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Example: Parallelizable?

/* Gaussian Elimination (no pivoting):

for (int i = 0; 1 < N-1; i++) {
for (int j = i; j < N; j++) {
double ratio = A[j][i]/A[i][i];
for (int k = i; k < N; k++) {
A[j]l[k] -= (ratio*A[i][k]);
b[j] -= (ratio*b[i])

i BERKELEY LAB
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Example: Parallelizable?

<, < 5 %
%, {/o /oo {/

K 07 (2

Pivot row/
D column
. Updated

entries

. Unused
entries

K %
z‘/o {{ z'/o 1 {
% 4 %
KN 2
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Example: Parallelizable?

e Outermost Loop (1):

o N-1 iterations
o lterations depend upon each other (values computed at step

1-1 usedin step 1)
e Innerloop (5):

o N-1 iterations (constant for given 1)

o lterations can be performed in any order
e Innermost loop (k):

o N-1 iterations (constant for given 1)

o Iterations can be performed in any order

(X Office of
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Example: Parallelizable?

/* Gaussian Elimination (no pivoting):

for (int i = 0; 1 < N-1; i++) {
#pragma omp parallel for
for (int j = i; j < N; Jj++) {
double ratio = A[j][i]/A[i][i];
for (int k = 1; k < N; k++) {
A[j]l[k] -= (ratio*A[i] [k])
b[j] -= (ratio*b[i]);

Note: can combine parallel and
for into single pragma
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OpenMP Directives: Sections

e Non-iterative work-sharing construct

e Divide enclosed sections of code among threads
e Section directives nested within sections directive
o

Syntax: C/C++ Fortran
#pragma omp sections 'Somp sections
{
#pragma omp section 'Somp section
/* first section */ c First section
#pragma omp section 'Somp section
/* next section */ c Second section

1Somp end secthps
BERKELEY LAB @ F e
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Example: Sections

#include <omp.h> #pragma omp parallel shared(a,b,c,d)
#define N private (i)
{
#pragma omp sections nowait
double a[N], b[N]; {
double c[N], 4d[N]; #pragma omp section
/* Some initializations */ for (i=0; i < N; i++)
for (i=0; i < N; i++) { c[i] = a[i] + b[i];
a[i] =1 * 1.5; #pragma omp section
b[i] = i + 22.35; for (i=0; i < N; i++)
d[i] = a[i] * b[i]~’
} /* end of sections */

} /* end of parallel section */
return O;

}
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OpenMP Directives: Synchronization

e Sometimes, need to make sure threads execute regions

of code in proper order
o Maybe one part depends on another part being completed
o Maybe only one thread need execute a section of code

e Synchronization directives
o Critical
o Barrier
o Single




OpenMP Directives: Synchronization

e Ciritical

o Specifies section of code that must be executed by only one
thread at a time

o Syntax: C/C++

#pragma omp critical (name)
o Fortran

!Somp critical (name)

!Somp end critical

o Names are global identifiers — critical regions with same name
are treated as same region

Office of
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OpenMP Directives: Synchronization

e Single

(@)

(@)

(@)

Enclosed code is to be executed by only one thread

Useful for thread-unsafe sections of code (e.g., I/O)

Syntax: C/C++ Fortran

#pragma omp single !Somp single
!Somp end single

Office of
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OpenMP Directives: Synchronization

e Barrier
o Synchronizes all threads: thread reaches barrier and waits until
all other threads have reached barrier, then resumes executing
code following barrier
o Syntax: C/C++ Fortran

#pragma omp barrier !SOMP barrier

o Sequence of work-sharing and barrier regions encountered must
be the same for every thread

Office of
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OpenMP Directives: Reduction

e Reduces list of variables into one, using operator (e.g.,
max, sum, product, etc.)
e Syntax

#pragma omp reduction(op : list)
!Somp reduction(op : list)

o where list is list of variables and op is one of following:
m C/IC++: 4+, -, *, &, ~, |, &&, ||, max, min
m Fortran:+, -, *, .and., .or., .eqv., .neqv., max,
min, iand, ior, ieor
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I1l. VARIABLE SCOPE

“M119A2 Scope” by Georgia National Guard, source:
http://www.flickr.com/photos/ganatiquard/5934238668/sizes/|/in/photostream/
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lll. Variable Scope

e About variable scope
e Scoping clauses
e Common mistakes

109
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About Variable Scope

e Variables can be shared or private within a parallel region

e Shared: one copy, shared between all threads
o Single common memory location, accessible by all threads

e Private: each thread makes its own copy
o Private variables exist only in parallel region
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About Variable Scope

e By default, all variables shared except

o Index values of parallel region loop — private by default
Local variables and value parameters within subroutines called

within parallel region — private
o Variables declared within lexical extent of parallel region —

private
e Variable scope is the most common source of errors in

OpenMP codes

o Correctly determining variable scope is key to correctness and
performance of your code

(@)
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Variable Scoping Clauses: Shared

e Shared variables: shared (list)
o By default, all variables shared unless otherwise specified
o All threads access this variable in same location in memory
o Race conditions can occur if access is not carefully controlled

Office of
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